B.Sc. Informationssystemtechnik
Basis-Module
(PO 2015)
Dieses Modulhandbuch listet nur die Grundlagen. Für die Wahlbereiche Vertiefungen und Anwendungen gibt es ein eigenes Modulhandbuch.
Modulhandbuch: B.Sc. Informationssystemtechnik Basis-Module (PO 2015)

Stand: 01.10.2020

Studienbereich Informationssystemtechnik
Email: studienberatung@ist.tu-darmstadt.de
Inhaltsverzeichnis

1 Grundlagen

1.1 Grundlagen der Mathematik
- Mathematik I (für ET) .. 1
- Mathematik II (für ET) .. 3
- Mathematik III (für ET) .. 4
- Mathematik IV (für ET) /Mathematik III (für Inf) /Praktische Mathematik (für M.Ed.Math) 5

1.2 Grundlagen der Elektrotechnik und Informationstechnik

1.2.1 Elektrotechnik
- Einführungsprojekt .. 6
- Elektrotechnik und Informationstechnik I .. 7
- Praktikum Elektrotechnik und Informationstechnik I .. 9
- Elektrotechnik und Informationstechnik II .. 11

1.2.2 Informationstechnik
- Deterministische Signale und Systeme .. 13
- Nachrichtentechnik .. 15
- Elektronik .. 17

1.3 Grundlagen der Informatik

1.3.1 Programmierkonzepte
- Funktionale und objektorientierte Programmierkonzepte .. 19
- Algorithmen und Datenstrukturen .. 21

1.3.2 Digitaltechnik - Logischer Entwurf
- Digitaltechnik .. 23
- Logischer Entwurf .. 25

1.3.3 Rechnersysteme - Rechnerorganisation
- Rechnerorganisation .. 26
- Rechnersysteme I .. 27

1.3.4 Systemnahe und Parallele Programmierung & Betriebssysteme
- Systemnahe und parallele Programmierung .. 28
- Betriebssysteme .. 29

1.3.5 Software-Engineering
- Software Engineering .. 31
- Software-Engineering - Einführung .. 33

2 Vertiefungen und Anwendungen

3 Studium Generale

- Mentoring als Fachspezifisches Instrument (für iST) .. 35
1 Grundlagen

1.1 Grundlagen der Mathematik

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Mathematik I (für ET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>04-00-0108</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>8 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>240 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>150 h</td>
</tr>
<tr>
<td>Modul-Nr.</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Jedes 2. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Apl. Prof. Dr. rer. nat. Steffen Roch</td>
</tr>
</tbody>
</table>

1 Lerninhalt
Grundlagen, reelle und komplexe Zahlen, reelle Funktionen, Stetigkeit, Differentialrechnung und Integralrechnung in einer Variablen, Vektorräume, lineare Abbildungen, lineare Gleichungssysteme

2 Qualifikationsziele / Lernergebnisse
Die Studierenden sind vertraut mit
- den elementaren Methoden der mathematischen Begriffsbildung
- den elementaren Methoden des logischen Schließens

Die Studierenden beherrschen die Grundzüge von
- linearer Algebra
- analytischer Geometrie
- der Analysis von Funktionen in einer reellen Veränderlichen.

3 Empfohlene Voraussetzung für die Teilnahme
keine

4 Prüfungsform
Modulabschlussprüfung:
 • Modulprüfung (Fachprüfung, Fachprüfung, Standard BWS)

5 Benotung
Modulabschlussprüfung:
 • Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
Für B.Sc.ETiT, B.Ed.ETiT, B.Sc.WIETiT: Pflicht
Für B.Sc.MEC, B.Sc.CE, B.Sc.IST (PO 2007): Als Teil von Mathe A
B.Sc.iKT auslaufend.

7 Notenverbesserung nach §25 (2)

8 Literatur
Von Finckenstein, Lehn, Schelhaas, Wegmann: Arbeitsbuch für Ingenieure I, Teubner,
Burg, Haf, Wille: Höhere Mathematik für Ingenieure I, II, Teubner,
Meyberg, Vachenauer, Höhere Mathematik 1, Springer

Enthaltene Kurse
<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0126-vu</td>
<td>Mathematik I (für ET)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apl. Prof. Dr. rer. nat. Steffen Roch</td>
<td>Vorlesung und Übung</td>
<td>6</td>
</tr>
</tbody>
</table>

1.1 Grundlagen der Mathematik
Modulname
Mathematik II (für ET)

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0109</td>
<td>8 CP</td>
<td>240 h</td>
<td>150 h</td>
<td>1</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Apl. Prof. Dr. rer. nat. Steffen Roch</td>
</tr>
</tbody>
</table>

1. **Lerninhalt**
 - Determinanten, Eigenwerte, quadratische Formen, Funktionenfolgen und -reihen, Taylor- und Fourierreihen, Differentialrechnung im \mathbb{R}^n, Extrema, inverse und implizite Funktionen, Wegintegrale, Integration im \mathbb{R}^n.

2. **Qualifikationsziele / Lernergebnisse**
 - Die Studierenden besitzen ein vertieftes Verständnis mathematischer Prinzipien
 - Die Studierenden beherrschen die Grundzüge der Analysis von Funktionen mehrerer Veränderlichen
 - Die Studierenden können die Analysis von Funktionen mehrerer Veränderlichen unter Anleitung auf Probleme der Ingenieurwissenschaften anwenden.

3. **Empfohlene Voraussetzung für die Teilnahme**
 - Mathematik 1

4. **Prüfungsform**
 - Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Fachprüfung, Standard BWS)

5. **Benotung**
 - Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100 %)

6. **Verwendbarkeit des Moduls**
 - Für B.Sc.ETiT, B.Ed.ETiT, B.Sc.WIETiT: Pflicht
 - Für B.Sc.MEC, B.Sc.CE, B.Sc.IST (PO 2007): Als Teil von Mathe A Pflicht
 - B.Sc.iKT auslaufend.

7. **Notenverbesserung nach §25 (2)**

8. **Literatur**
 - Von Finckenstein/Lehn/Schellhaas/Wegmann: Arbeitsbuch Mathematik für Ingenieure. Band I, Teubner Verlag,
 - Burg, Haf, Wille: Höhere Mathematik für Ingenieure I, II, Teubner Verlag,
 - Meyberg, Vachenauer: Höhere Mathematik 1, Springer Verlag

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0079-vu</td>
<td>Mathematik II (für ET)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apl. Prof. Dr. rer. nat. Steffen Roch</td>
<td>Vorlesung und Übung</td>
<td>6</td>
</tr>
</tbody>
</table>
Modulname
Mathematik III (für ET)

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0111</td>
<td>8 CP</td>
<td>240 h</td>
<td>180 h</td>
<td>1</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Apl. Prof. Dr. rer. nat. Steffen Roch

1 Lerninhalt
Integralrechnung: Oberflächenintegrale, Integralsätze; Gewöhnliche Differentialgleichungen: Lineare und nichtlineare Differentialgleichungen, Existenz und Eindeutigkeit der Lösungen, Laplacetransformation; Funktionentheorie: Komplexe Funktionen, komplexe Differenzierbarkeit, Integralformel von Cauchy, Potenzreihen und Laurentreihen, Residuen, Residuensatz

2 Qualifikationsziele / Lernergebnisse
Die Studierenden erwerben die mathematischen Fähigkeiten
- zur Modellierung von ingenieurwissenschaftlichen Sachverhalten
- zur Analyse von ingenieurwissenschaftlichen Sachverhalten
Die Studierenden kennen
- grundlegende Lösungseigenschaften
- explizite Lösungsmethoden für gewöhnliche Differentialgleichungen
Die Studierenden beherrschen die Grundzüge der komplexen Funktionentheorie.

3 Empfohlene Voraussetzung für die Teilnahme
Mathematik 1 und Mathematik 2

4 Prüfungsform
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard BWS)

5 Benotung
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
Für B.Sc.ETiT, B.Ed.ETiT, B.Sc.WIETiT, B.Sc.MEC, B.Sc.CE, B.Sc.IST (PO 2007): Pflicht
Für B.Sc.EPE, B.Sc.IST (bis PO 2006), B.Sc.iKT: Pflicht zusammen mit Mathematik 4 als Mathematik B B.Sc.iKT auslaufend.

7 Notenverbesserung nach §25 (2)

8 Literatur
Von Finckenstein, Lehn, Schellhaas, Wegmann: Arbeitsbuch für Ingenieure II, Teubner,
Burg, Haf, Wille: Höhere Mathematik für Ingenieure III, IV, Teubner
Freitag, Busam: Funktionentheorie 1, Springer

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0127-vu</td>
<td>Mathematik III (für ET)</td>
<td>Apl. Prof. Dr. rer. nat. Steffen Roch</td>
<td>Vorlesung und Übung</td>
<td>4</td>
</tr>
</tbody>
</table>

1.1 Grundlagen der Mathematik
Modulname
Mathematik IV (für ET) /Mathematik III (für Inf) /Praktische Mathematik (für M.Ed.Math)

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldaurer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0112</td>
<td>8 CP</td>
<td>240 h</td>
<td>150 h</td>
<td>1</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. rer. nat. Stefan Ulbrich</td>
</tr>
</tbody>
</table>

1 Lerninhalt
Numerik: Numerische Lösung linearer Gleichungssysteme, Interpolation, Numerische Quadraturverfahren, Nichtlineare Gleichungssysteme, Anfangswertproblem für gewöhnliche Differentialgleichungen, Eigenwert-/Eigenvektorberechnung,
Statistik: Grundbegriffe der Statistik und Wahrscheinlichkeitsrechnung, Regression, multivariate Verteilungen, Schätzverfahren und Konfidenzintervalle,
Tests bei Normalverteilungsannahme, robuste Statistik

2 Qualifikationsziele / Lernergebnisse
Fähigkeit für grundlegende Aufgabenstellungen geeignete numerische Verfahren auszuwählen und anzuwenden. Fähigkeit statistische Auswertungen vorzunehmen, grundlegende Schätzverfahren und Testverfahren durchzuführen.

3 Empfohlene Voraussetzung für die Teilnahme
Mathematik 1 und Mathematik 2

4 Prüfungsform
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard BWS)

5 Benotung
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls

7 Notenverbesserung nach §25 (2)

8 Literatur
Von Finckenstein, Lehn, Schellhaas, Wegmann: Arbeitsbuch für Ingenieure II, Teubner Verlag Stuttgart;

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0081-vu</td>
<td>Mathematik IV (für ET) /Mathematik III (für Inf) /PraktischeMathematik (für M.Ed.Math)</td>
<td>Prof. Dr. rer. nat. Stefan Ulbrich</td>
<td>Vorlesung und Übung</td>
<td>6</td>
</tr>
</tbody>
</table>

1.1 Grundlagen der Mathematik
1.2 Grundlagen der Elektrotechnik und Informationstechnik

1.2.1 Elektrotechnik

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Einführungsprojekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>18-de-1010</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>2 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>60 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>30 h</td>
</tr>
<tr>
<td>Modul-Nr.</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Prof. Dr.-Ing. Harald Klingbeil</td>
</tr>
</tbody>
</table>

1 Lerninhalt

2 Qualifikationsziele / Lernergebnisse
Studierende lernen Problemanalyse, Recherchieren von Informationen, Teamarbeit, Projektmanagement und Präsentation von Ergebnissen kennen.

3 Empfohlene Voraussetzung für die Teilnahme

4 Prüfungsform
Modulabschlussprüfung:
 • Modulprüfung (Studienleistung, mündliche Prüfung, Dauer: 15 min, b/nb BWS)

5 Benotung
Modulabschlussprüfung:
 • Modulprüfung (Studienleistung, mündliche Prüfung, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
BSc ETiT, BSc MEC, BSc iST

7 Notenverbesserung nach §25 (2)

8 Literatur
Skript zum Einführungsprojekt (wird ausgeteilt)

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-1010-pj</td>
<td>Einführungsprojekt (Projektwoche)</td>
<td>Projekt</td>
<td>2</td>
</tr>
</tbody>
</table>

Dozent
Prof. Dr.-Ing. Harald Klingbeil, M. A. Stephanie Bockshorn, Dipl.-Soz. Goran Beil
Modulname
Elektrotechnik und Informationstechnik I

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Modulduer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hs-1070</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Prof. Dr.-Ing. Jutta Hanson

1. **Lerninhalt**

2. **Qualifikationsziele / Lernergebnisse**
 Studierende sind nach Besuch der Lehrveranstaltung in der Lage
 * die Grundgleichungen der Elektrotechnik anzuwenden,
 * Ströme und Spannungen an linearen und nichtlinearen Zweipolen zu berechnen,
 * Gleichstrom- und Wechselstromnetzwerke zu beurteilen,
 * einfache Filterschaltungen und Schwingkreise zu analysieren,
 * die komplexe Rechnung in der Elektrotechnik anzuwenden.

3. **Empfohlene Voraussetzung für die Teilnahme**

4. **Prüfungsform**
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Klausur, Dauer: 90 min, Standard BWS)

5. **Benotung**
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

6. **Verwendbarkeit des Moduls**
 BSc. ETiT, BSc iST, BSc MEC, BSc Wi-ETiT, BSc CE, LA Physik/Mathematik

7. **Notenverbesserung nach §25 (2)**

8. **Literatur**
 Frohne, H. u.a. Moeller Grundlagen der Elektrotechnik
 Clausert, H. u.a. Grundgebiete der Elektrotechnik 1 + 2

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurs-Nr.</td>
<td>Kursname</td>
<td>Dozent</td>
<td>Lehrform</td>
<td>SWS</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>----------</td>
<td>-----</td>
</tr>
</tbody>
</table>

1.2 Grundlagen der Elektrotechnik und Informationstechnik
Modulname
Praktikum Elektrotechnik und Informationstechnik I

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Modulduer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1040</td>
<td>4 CP</td>
<td>120 h</td>
<td>0 h</td>
<td>2</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Prof. Dr. Mario Kupnik

1 **Lerninhalt**

Folgende Versuche werden durchgeführt
- Untersuchung des realen Verhaltens von ohmschen Widerständen
- Untersuchung des realen Verhaltens von Kapazitäten und Induktivitäten.
- Berechnung von Impedanzen einfacher elektrischer Zweipol-Schaltungen mit Hilfe der Netzwerktheorie.
- Messen von Leistung im Wechselstromkreis und Untersuchungen zum realen Verhalten von Transformatoren.

2 **Qualifikationsziele / Lernergebnisse**
Nach selbständiger Vorbereitung der Nachmittage und selbständiger Durchführung des Messaufbaus und der Messaufgaben durch aktive Mitarbeit in der Praktikumsgruppe sowie durch gründliche Ausarbeitung der zugehörigen Messprotokolle sollten Sie in der Lage sein:
- die Messung von Basisgrößen elektrischer Gleichstrom- und Wechselstromschaltungen selbständig und bei Beachtung der Sicherheitsregeln durchführen zu können
- die Aufnahme von Frequenzgängen an passiven elektrischen Netzwerken und Resonanzkreisen sowie die elektrische Leistungsmessung durchführen und erläutern zu können
- die messtechnischen Schaltungen für die Ermittlung magnetischer, einfacher elektrothermischer und hochfrequenter Größen selbständig aufbauen und deren Messung durchführen zu können,
- die Messergebnisse hinsichtlich ihrer technischen Bedeutung, aber auch ihrer Genauigkeit und der Fehlereinflüsse sicher bewerten zu können.

3 **Empfohlene Voraussetzung für die Teilnahme**
Paralleler Besuch der Vorlesungen und Übungen „Elektrotechnik und Informationstechnik I und II“

4 **Prüfungsform**
Modulabschlussprüfung:
- Modulprüfung (Studienleistung, fakultativ, Standard BWS)

5 **Bewertung**
Modulabschlussprüfung:
- Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100 %)

6 **Verwendbarkeit des Moduls**
BSc ETIT

7 **Notenverbesserung nach §25 (2)**

8 **Literatur**
ausführliches Skript mit Versuchsanleitungen; Clausert, H. / Wiesemann, G.: Grundgebiete der Elektrotechnik, Oldenbourg, 1999

Enthaltene Kurse

1.2 Grundlagen der Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kn-1041-pr</td>
<td>Praktikum Elektrotechnik und Informationstechnik I B</td>
<td>Prof. Dr. Mario Kupnik</td>
<td>Praktikum</td>
<td>2</td>
</tr>
<tr>
<td>18-kn-1040-pr</td>
<td>Praktikum Elektrotechnik und Informationstechnik I A</td>
<td>Prof. Dr. Mario Kupnik, M.Sc. Gianni Allevato</td>
<td>Praktikum</td>
<td>2</td>
</tr>
<tr>
<td>18-kn-1040-tt</td>
<td>Praktikum Elektrotechnik und Informationstechnik I, Einführungsveranstaltung</td>
<td>Prof. Dr. Mario Kupnik, Dr.-Ing. Axel Jäger</td>
<td>Tutorium</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Grundlagen der Elektrotechnik und Informationstechnik
Elektrotechnik und Informationstechnik II

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1020</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
</tr>
</tbody>
</table>

1. **Lerninhalt**
Elektrostatische Felder; Stationäre elektrische Strömungsfelder; Stationäre Magnetfelder; Zeitlich veränderliche Magnetfelder; Vorgänge in Leitungen

2. **Qualifikationsziele / Lernergebnisse**
Die Studierenden haben sich von der Vorstellung gelöst, dass alle elektrischen Vorgänge leitungsgebunden sein müssen; sie haben eine klare Vorstellung vom Feldbegriff, können Feldbilder lesen und interpretieren und eine Feldbilder auch selbst konstruieren; sie verstehen den Unterschied zwischen einem Wirbelfeld und einem Quellenfeld und können diesen mathematisch beschreiben bzw. aus einer mathematischen Beschreibung den Feldtyp erkennen; sie sind in der Lage, für einfache rotationssymmetrische Anordnungen Feldverteilungen analytisch zu errechnen; sie können sicher mit den Definitionen des elektrostatischen, elektroquasistatischen, magnetostatischen, magnetodynamischen Feldes umgehen; sie haben den Zusammenhang zwischen Elektrizität und Magnetismus erkannt; sie beherrschen die zur Beschreibung erforderliche Mathematik und können diese auf einfache Beispiele anwenden; sie können mit nichtlinearen magnetischen Kreisen rechnen; sie können Induktivität, Kapazität und Widerstand einfacher geometrischer Anordnungen berechnen und verstehen diese Größen nun als physikalische Eigenschaft der jeweiligen Anordnung; sie haben erkannt, wie verschiedene Energieformen ineinander überführt werden können und können damit bereits einfache ingenieurwissenschaftliche Probleme lösen; sie haben für viele Anwendungen der Elektrotechnik die zugrundeliegenden physikalischen Hintergründe verstanden und können diese mathematisch beschreiben, in einfacher Weise weiterentwickeln und auf andere Beispiele anwenden; sie kennen das System der Maxwell'schen Gleichungen und können diese von der integralen in die differentielle Form überführen; sie haben die ersten Vorstellungen von der Bedeutung der Maxwell'schen Gleichungen für sämtliche Problemstellungen der Elektrotechnik und sie verstehen Wellengänge im freien Raum sowie auf Leitungen.

3. **Empfohlene Voraussetzung für die Teilnahme**
Elektrotechnik und Informationstechnik I

4. **Prüfungsform**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Dauer: 120 min, Standard BWS)

5. **Bewertung**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

6. **Verwendbarkeit des Moduls**
BSc ETiT, BSc MEC, BSc Wi-ETiT, LA Physik/Mathematik, BSc CE, BSc iST

7. **Notenverbesserung nach §25 (2)**
Notenverbesserung entsprechend §25 (2) APB TU Darmstadt

8. **Literatur**
- Sämtliche VL-Folien zum Download

Enthalte Kurse
<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-gt-1020-vl</td>
<td>Elektrotechnik und Informationstechnik II</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>18-gt-1020-ue</td>
<td>Elektrotechnik und Informationstechnik II</td>
<td>Prof. Dr.-Ing. Gerd Griepentrog</td>
<td>Übung</td>
<td>2</td>
</tr>
</tbody>
</table>

12. Grundlagen der Elektrotechnik und Informationstechnik
Modulname
Deterministische Signale und Systeme

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Modulduauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1010</td>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Prof. Dr.-Ing. Anja Klein

Lerninhalten

1. **Fourier Reihen**
 - Motivation
 - Fourier Reihen mit reellen Koeffizienten
 - Orthogonalität
 - Fourier Reihen mit komplexen Koeffizienten
 - Beispiele und Anwendungen

2. **Fourier Transformation**
 - Motivation
 - Übergang Fourier-Reihe -> Fourier Transformation
 - Diskussion der Dirichlet Bedingungen
 - Delta Funktion, Sprung Funktion
 - Eigenschaften der Fourier Transformation
 - Sonderfälle
 - Beispiele und Anwendungen

3. **Faltung**
 - Zeitinvariante Systeme
 - Faltung im Frequenzbereich
 - Parseval'sche Theorem
 - Eigenschaften
 - Beispiele und Anwendungen

4. **Systeme und Signale**
 - Bandbegrenzte und zeitbegrenzte Systeme
 - Periodische Signale
 - Systeme mit nur einem Energie-Speicher
 - Beispiele und Anwendungen

5. **Laplace Transformation**
 - Motivation
 - Einseitige Laplace Transformation
 - Laplace Rücktransformation
 - Sätze der Laplace-Transformation
 - Beispiele und Anwendungen

6. **Lineare Differentialgleichungen**
 - Zeitinvariante Systeme
 - Differenzierungen
 - Einschaltvorgänge
 - Verallgemeinerte Differenziation
 - Lineare passive elektrische Netzwerke
 - Ersatzschaltbilder für passive elektrische Bauelemente
 - Beispiele und Anwendungen

7. **z-Transformation**
 - Motivation
 - Abtastung
 - Zahlenfolgen
 - Definition der z-Transformation
 - Beispiele
 - Konvergenzbereiche
 - Sätze der z-Transformation
 - Übertragungsfunktion
 - Zusammenhang zur Laplace Transformation
 - Verfahren zur Rücktransformation
 - Faltung
 - Beispiele und Anwendungen

8. **Diskrete Fourier Transformation**
 - Motivation
 - Ableitung
 - Abtasttheorem
 - Beispiele und Anwendungen

Qualifikationsziele / Lernergebnisse
Der Student soll die Prinzipien der Integraltransformation verstehen und sie bei physikalischen Problemen anwenden können. Die in dieser Vorlesung beigebrachten Techniken dienen als mathematisches Handwerkszeug für viele nachfolgende Vorlesungen.

Empfohlene Voraussetzung für die Teilnahme
Elektrotechnik und Informationstechnik I und Elektrotechnik und Informationstechnik II

Prüfungsform
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Dauer: 120 min, Standard BWS)

Benotung
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

Verwendbarkeit des Moduls
BSc ETiT, BSc MEC, BSc Wi-ETiT, LA Physik/Mathematik, BSc CE, BSc iST

Notenverbesserung nach §25 (2)

Literatur

1.2.2 Informationstechnik

1.2 Grundlagen der Elektrotechnik und Informationstechnik 13
Ein Vorlesungsskript bzw. Folienwerden elektronisch bereitgestellt:

Grundlagen:
Wolfgang Preuss, „Funktionaltransformationen“, Carl Hanser Verlag, 2002; Klaus-Eberhard Krueger "Transformationen", Vieweg Verlag, 2002;
T. Frey, M. Bossert, Signal- und Systemtheorie, Teubner Verlag, 2004

Vertiefende Literatur:
Dieter Mueller-Wichards "Transformationen und Signale", Teubner Verlag, 1999

Übungsaufgaben:
Hwei Hsu SS Signals and Systems", Schaum's Outlines, 1995

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-kl-1010-vl</td>
<td>Deterministische Signale und Systeme</td>
<td>Prof. Dr.-Ing. Anja Klein, M.Sc. Tobias Mahn, Prof. Dr.-Ing. Marius Pesavento</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>18-kl-1010-ue</td>
<td>Deterministische Signale und Systeme</td>
<td>Prof. Dr.-Ing. Anja Klein, M.Sc. Tobias Mahn, Prof. Dr.-Ing. Marius Pesavento</td>
<td>Übung</td>
<td>2</td>
</tr>
</tbody>
</table>
Modulname
Nachrichtentechnik

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Sprache: Deutsch

Modulverantwortliche Person
Prof. Dr.-Ing. Rolf Jakoby

1 Lerninhalt

Block 1: Nach einer Einführung in die Informations- und Kommunikationstechnik (Kap. 1), in der u.a. auf Signale als Träger der Information, Klassifizierung elektrischer Signale und Elemente der Informationsübertragung eingegangen wird, liegt der erste Schwerpunkt der Vorlesung auf der Pegelrechnung (Kap. 2). Dabei werden sowohl leitungsgebundene als auch drahtlose Übertragung mit Grundlagen der Antennenabstrahlung behandelt. Die erlernten Grundlagen werden abschließend für unterschiedliche Anwendungen, z.B. für ein TV-Satellitenempfangssystem betrachtet.

Block 4: Kap. 7 behandelt die Grundlagen der Multiplex- und RF-Modulationsverfahren und der hierzu erforderlichen Techniken wie Frequenzumsetzung, -vervielfachung und Mischung. Abschließend werden unterschiedliche Empfängerprinzipien, die Spiegelfrequenzproblematik beim Überlagerungsempfänger und exemplarisch amplitudenmodulierte Signale erläutert. Die digitale Modulation eines harmonischen Trägers (Kap. 8) bildet die Basis zum Verständnis einer intersymbolinterferenzfreien bandbegrenzten Übertragung, signalangepassten Filterung und der binären Umtastung eines sinusförmigen Trägers in Amplitude (ASK), Phase (PSK) oder Frequenz (FSK). Daraus wird die höherstufige Phasenumtastung (M-PSK, M-QAM) abgeleitet. Ein kurzer Ausblick auf die Funktionsweise der Kanalcodierung und des Interleavings komplettiert die Vorlesung (Kap. 9). Zur Demonstration und Verstärkung der Vorlesungsinhalte werden einige kleine Versuche vorgeführt.

2 Qualifikationsziele / Lernergebnisse
Studenten verstehen die wesentlichen Grundlagen der Nachrichtentechnik (Physical Layer): die Signalübertragung von der Quelle zur Senke, mögliche Übertragungsverfahren, Störungen der Signale bei der Übertragung, Techniken zu deren Unterdrückung oder Reduktion.

3 Empfohlene Voraussetzung für die Teilnahme
Deterministische Signale und Systeme

4 Prüfungsform
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Dauer: 120 min, Standard BWS)
5 Benotung
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
BSc ETiT, Wi-ETiT

7 Notenverbesserung nach §25 (2)

8 Literatur

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-jk-1010-vl</td>
<td>Nachrichtentechnik</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>18-jk-1010-ue</td>
<td>Nachrichtentechnik</td>
<td>Prof. Dr.-Ing. Rolf Jakoby</td>
<td>Übung</td>
<td>1</td>
</tr>
</tbody>
</table>

1.2 Grundlagen der Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Elektronik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>18-ho-1011</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>7 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>210 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>135 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Prof. Dr.-Ing. Klaus Hofmann</td>
</tr>
</tbody>
</table>

1. **Lerninhalt**

 - 18-ho-1011-vl bzw. –ue:
 - Halbleiterbauelemente: Diode, MOSFET, Bipolartransistor.
 - Elektronischer Schaltungsentwurf; Analogschaltungen: grundlegende Eigenschaften, Verhalten und Beschaltung von Operationsverstärkern, Schaltungssimulation mit SPICE, Kleinsignalverstärkung, Einstufige Verstärker, Frequenzgang; Digitale Schaltungen: CMOS-Logikschaltungen

 - 18-ho-1011-pr:
 - Praktische Versuche in den Bereichen:
 - Digitalschaltungen: FPGA-Programmierung;
 - Analogschaltungen: Grundlegende Blöcke, Verstärker, Operationsverstärker, Filter und Demodulatoren

2. **Qualifikationsziele / Lernergebnisse**

 Ein Student kann nach Besuch der Veranstaltung
 - Dioden, MOS- und Bipolartransistoren in einfachen Schaltungen analysieren,
 - die Eigenschaften von Eintransistorschaltungen (MOSFET+Bjt), wie Kleinsignalverstärkung, Ein- und Ausgangswiderstand berechnen,
 - Operationsverstärker zu invertierenden und nicht-invertierenden Verstärkern beschalten und kennt die idealen und nicht-idealigen Eigenschaften,
 - die Frequenzeigenschaften einfacher Transistorschaltungen berechnen,
 - die unterschiedlichen verwendeten Schaltungstechniken logischer Gatter und deren grundlegende Eigenschaften erklären.

 Ein Student kann nach absolviertem Praktikum
 - Messungen im Zeit-und Frequenzbereich mit Hilfe eines Oszilloskops an Operationsverstärkerschaltungen durchführen,
 - eine Ampelsteuerung mit Hilfe eines Zustandsdiagramms entwerfen und mit Hilfe eines FPGAs zu realisieren,
 - eine Leiterplatte bestücken und das System erfolgreich in Betrieb nehmen,
 - eine analoge Schaltung (Filter) in SPICE simulieren und meßtechnisch erfassen.

3. **Empfohlene Voraussetzung für die Teilnahme**

 Grundlagen der Elektrotechnik

4. **Prüfungsform**

 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Klausur, Dauer: 90 min, Standard BWS)
 - Bausteinbegleitende Prüfung:
 - [18-ho-1011-pr] (Studienleistung, fakultativ, Standard BWS)

5. **Benotung**

 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Klausur, Gewichtung: 4)
 - Bausteinbegleitende Prüfung:
 - [18-ho-1011-pr] (Studienleistung, fakultativ, Gewichtung: 3)

6. **Verwendbarkeit des Moduls**

 BSc ETIT, BSc Wi-ETIT, BSc iST, BEd
<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-ho-1011-vl</td>
<td>Elektronik</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Dozent</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurs-Nr.</td>
<td>Kursname</td>
<td>Lehrform</td>
<td>SWS</td>
</tr>
<tr>
<td>18-ho-1011-pr</td>
<td>Elektronik-Praktikum</td>
<td>Praktikum</td>
<td>2</td>
</tr>
<tr>
<td>Dozent</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Ferdinand Keil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurs-Nr.</td>
<td>Kursname</td>
<td>Lehrform</td>
<td>SWS</td>
</tr>
<tr>
<td>18-ho-1011-ue</td>
<td>Elektronik</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>Dozent</td>
<td>Prof. Dr.-Ing. Klaus Hofmann, M.Sc. Oliver Bachmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3 Grundlagen der Informatik

1.3.1 Programmierkonzepte

Modulname
Funktionale und objektorientierte Programmierkonzepte

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0004</td>
<td>10 CP</td>
<td>300 h</td>
<td>180 h</td>
<td>1</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Prof. Dr. phil. nat. Marc Fischlin

Lerninhalt

Themenschwerpunkte sind:
- Grundlegende Programmierkonzepte
- Grundlagen der funktionalen Programmierung
- Grundlagen der objektorientierten Programmierung
- Entwurf einfacher Softwaresysteme
- Einfache Typsysteme
- Grundlegende Datenstrukturen und Algorithmen und ihre Komplexität
- Rekursion
- Einfache Ein-/Ausgabe
- Grundlagen des Testens
- Dokumentation von Sourcecode

Qualifikationsziele / Lernergebnisse
Nach erfolgreichem Abschluss der Veranstaltung sind Studierende mit den Grundlagen von funktionalen und objektorientierten Programmiersprachen vertraut und die Studierenden können die folgenden Aufgaben bewältigen:
- einfache Programmieraufgaben mit Hilfe von funktionalen und/oder objektorientierten Programmiersprachen systematisch lösen;
- Qualitätssicherung mittels einfacher (Unit-) Tests durchführen;
- die Komplexitätsklassen von Algorithmen und Datenstrukturen verstehen und darauf basierend die Eigenschaft selbiger für konkrete Aufgaben einschätzen;
- Sourcecode grundlegend unter Zuhilfenahme von Standardwerkzeugen dokumentieren.

Empfohlene Voraussetzung für die Teilnahme

Prüfungsform
Bausteinbegleitende Prüfung:
- [20-00-0004-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, BWS b/nb)
- [20-00-0004-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Standard BWS)

Benotung
Bausteinbegleitende Prüfung:
- [20-00-0004-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, Gewichtung: 0 %)
- [20-00-0004-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Gewichtung: 100 %)

Verwendbarkeit des Moduls
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

7 Notenverbesserung nach §25 (2)
In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 Literatur
- How to Design Programs; M. Felleisen et al.; The MIT Press Cambridge
- Structure and Interpretation of Computer Programs; H. Abelson et al.; Springer
- Thinking in Java; B. Eckel; Prentice Hall
- Christian Ullenboom: Java ist auch eine Insel; Galileo Computing

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0004-iv</td>
<td>Funktionale und objektorientierte Programmierkonzepte</td>
<td>Integrierte Veranstaltung</td>
<td>8</td>
</tr>
</tbody>
</table>

1.3 Grundlagen der Informatik
Modulname
Algorithmen und Datenstrukturen

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0005</td>
<td>10 CP</td>
<td>300 h</td>
<td>180 h</td>
<td>1</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

Sprache Deutsch

Modulverantwortliche Person
Prof. Dr. phil. nat. Marc Fischlin

1 Lerninhalt
- Datenstrukturen: Array, Listen, Binäre Suchbäume, B-Bäume, Graphenrepräsentationen, Hashtabellen, Heaps
- Algorithmen: Sortieralgorithmen, Stringmatching, Traversieren, Einfügen, Suchen und Löschen bei bestimmten Datenstrukturen, Kürzeste Wege Suche, Minimal Spannende Bäume
- Asymptotische Komplexität
- NP-Vollständigkeit
- Algorithmisches Strategien: Divide-and-Conquer, Dynamische Programmierung, Brute-Force, Greedy, Backtracking, Metaheuristiken

2 Qualifikationsziele / Lernergebnisse
In dieser Veranstaltung lernen Studierende grundlegende Datenstrukturen und Algorithmen sowie die Komplexitätsklassen P, NP und NPC kennen. Sie erwerben die Fähigkeiten die Grundprinzipien der Algorithmik anzuwenden und asymptotische Komplexität einzuschätzen und zu bestimmen. Außerdem verstehen sie bedeutende algorithmische Strategien und können diese anwenden.

3 Empfohlene Voraussetzung für die Teilnahme
Empfohlen: Funktionale und objektorientierte Programmierkonzepte

4 Prüfungsform
Bausteinbegleitende Prüfung:
- [20-00-0005-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Standard BWS)
- [20-00-0005-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, BWS b/nb)

5 Benotung
Bausteinbegleitende Prüfung:
- [20-00-0005-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Gewichtung: 100 %)
- [20-00-0005-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, Gewichtung: 0 %)

6 Verwendbarkeit des Moduls
B.Sc. Informatik
B.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
B.Sc. Computational Engineering
B.Sc. Informationssystemtechnik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

7 Notenverbesserung nach §25 (2)
In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 Literatur
Wird in der Veranstaltung bekannt gegeben.

Enthaltene Kurse

1.3 Grundlagen der Informatik
<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0005-iv</td>
<td>Algorithmen und Datenstrukturen</td>
<td>Integrierte Veranstaltung</td>
<td>8</td>
</tr>
<tr>
<td>Modulname</td>
<td>Digitaltechnik - Logischer Entwurf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul-Nr.</td>
<td>20-00-0900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Jedes 2. Sem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Prof. Dr. phil. nat. Marc Fischlin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lerninhalt
- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung, Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter, Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra, Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z), Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten
- Sequentielle Schaltungen: Latches, Flip-Flops, Entwurf synchroner Schaltungen, endliche Automaten, Zeitverhalten, Parallelität
- Hardware-Beschreibungssprachen: Modellierung kombinatorischer und sequentieller Schaltungen, Strukturbeschreibungen, Modellierung endlicher Automaten, Datentypen, parametrierte Module, Testrahmen
- Grundelemente digitaler Schaltungen: arithmetische Schaltungen, Fest-/Gleitkommodarstellung, sequentielle Grundelemente, Speicherfelder, Logikfelder

Qualifikationsziele / Lernergebnisse
Studierende verstehen nach erfolgreichem Besuch der Veranstaltung die Konzepte und Grundelemente der digitalen Logik sowie ihre technologische Realisierung. Sie können diese Kenntnisse selbständig anwenden, um zielgerichtet kombinatorische und sequentielle Schaltungen zu konstruieren und in einer Hardware-Beschreibungssprache zu implementieren. Sie können digitale Schaltungen bezüglich funktionaler und nicht-funktionaler Eigenschaften analysieren.

Empfohlene Voraussetzung für die Teilnahme

Prüfungsform
- Bausteinbegleitende Prüfung:
 - [20-00-0900-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, BWS b/nb)
 - [20-00-0900-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Standard BWS)

Benotung
- Bausteinbegleitende Prüfung:
 - [20-00-0900-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, Gewichtung: 0%)
 - [20-00-0900-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Gewichtung: 100%)

Verwendbarkeit des Moduls
B.Sc. Informatik
B.Sc. Informationssystemtechnik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

Notenverbesserung nach §25 (2)

Literatur
- Literaturempfehlungen werden kontinuierlich aktualisiert, ein Beispiel für die verwendete Literatur könnte sein
 - Harris/Harris: Digital Design and Computer Architecture

Enthaltene Kurse

1.3 Grundlagen der Informatik
<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0900-iv</td>
<td>Digitaltechnik</td>
</tr>
<tr>
<td>Dozent</td>
<td>Lehrform</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Andreas Koch</td>
<td>Integrierte Veranstaltung</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Modulname</td>
<td>Logischer Entwurf</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Modul-Nr.</td>
<td>18-hb-1010</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>180 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
</tr>
</tbody>
</table>

1 **Lerninhalt**
Boolesche Algebra, Gatter, Hardware-Beschreibungssprachen, Flipflops, Sequentielle Schaltungen, Zustandsdiagramme und -tabellen, Technologie-Abbildung, Programmierbare Logikbausteine

2 **Qualifikationsziele / Lernergebnisse**
Studierende können nach Besuch der Lehrveranstaltung:
- Boolesche Funktionen umformen und in Gatterschaltungen transformieren
- Digitale Schaltungen analysieren und synthetisieren
- Digitale Schaltungen in einer Hardware-Beschreibungssprache formulieren
- Endliche Automaten aus informellen Beschreibungen gewinnen und durch synchrone Schaltungen realisieren

3 **Empfohlene Voraussetzung für die Teilnahme**

4 **Prüfungsform**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Dauer: 90 min, Standard BWS)

5 **Benotung**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

6 **Verwendbarkeit des Moduls**
BSc ETiT, BSc MEC, BSc Wi-ETiT

7 **Notenverbesserung nach §25 (2)**

8 **Literatur**
R.H. Katz: Contemporary Logic Design

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1010-vl</td>
<td>Logischer Entwurf</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>Dozent</td>
<td>Prof. Dr.-Ing. Christian Hochberger, M.Sc. Alexander Schwarz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1010-ue</td>
<td>Logischer Entwurf</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>Dozent</td>
<td>Prof. Dr.-Ing. Christian Hochberger, M.Sc. Alexander Schwarz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3 Grundlagen der Informatik
1.3.3 Rechnersysteme - Rechnerorganisation

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Rechnerorganisation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0902</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

Sprache: Deutsch

Modulverantwortliche Person:
Prof. Dr. phil. nat. Marc Fischlin

1. **Lerninhalt**
- Architektur von Mikroprozessoren: Programmierung in Assembler- und Maschinenensprache, Adressierungsarten, Werkzeugflüsse, Laufzeitumgebung
- Mikroarchitektur: Befehlsatz und architektureller Zustand, Leistungsbewertung, Mikroarchitekturen mit Eintakt-/Mehrtakt-/Pipeline-Ausführung, Ausnahmebehandlung, fortgeschrittene Mikroarchitekturen
- Speicher und Ein-/Ausgabesysteme: Leistungsbewertung, Caches, virtueller Speicher, Ein-/Ausgabetechniken, Standardschnittstellen

2. **Qualifikationsziele / Lernergebnisse**

3. **Empfohlene Voraussetzung für die Teilnahme**

4. **Prüfungsform**
Bausteinbegleitende Prüfung:
- [20-00-0902-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, BWS b/nb)
- [20-00-0902-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Standard BWS)

5. **Benotung**
Bausteinbegleitende Prüfung:
- [20-00-0902-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, Gewichtung: 0 %)
- [20-00-0902-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Gewichtung: 100 %)

6. **Verwendbarkeit des Moduls**
B.Sc. Informatik
B.Sc. Informationssystemtechnik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

7. **Notenverbesserung nach §25 (2)**

8. **Literatur**
Literaturempfehlungen werden kontinuierlich aktualisiert, ein Beispiel für verwendete Literatur könnte sein:
Harris/Harris: Digital Design and Computer Architecture

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0902-iv</td>
<td>Rechnerorganisation</td>
<td>Prof. Dr.-Ing. Andreas Koch</td>
<td>Integrierte Veranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

1.3 Grundlagen der Informatik
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Rechnersysteme I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>18-hb-1020</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>180 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Prof. Dr.-Ing. Christian Hochberger

1. **Lerninhalt**
Befehlssatzklassen von Prozessoren, Speicher-organisation und Laufzeitverhalten, Prozessorverhalten und -Struktur, Pipelining, Parallelismus auf Befehlsebene, Multiskalare Prozessoren, VLIW-Prozessoren, Gleitkommodarstellung, Speichersysteme, Cacheorganisation, virtuelle Adressierung, Benchmarking und Leistungsbewertung, Systemstrukturen und Bussysteme, Peripheriegeräte

2. **Qualifikationsziele / Lernergebnisse**

3. **Empfohlene Voraussetzung für die Teilnahme**
Besuch der Vorlesung „Logischer Entwurf“ bzw. Grundkenntnisse in Digitaltechnik

4. **Prüfungsform**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Dauer: 90 min, Standard BWS)

5. **Bewertung**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

6. **Verwendbarkeit des Moduls**
BSc ETiT, BSc Wi-ETiT

7. **Literatur**
Hennessy/Patterson: Computer architecture - a quantitative approach

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1020-vl</td>
<td>Rechnersysteme I</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-hb-1020-ue</td>
<td>Rechnersysteme I</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Christian Hochberger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3.4 Systemnahe und Parallele Programmierung & Betriebssysteme

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Systemnahe und parallele Programmierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>20-00-0905</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Jedes 2. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Prof. Dr. phil. nat. Marc Fischlin</td>
</tr>
</tbody>
</table>

1 Lerninhalte
- Programmiersprachen für systemnahe Programmierung
- Grundlagen paralleler Systeme
- parallele Architekturen, Multi- und Many-Core Systeme, Rechnernetze
- Programmierparadigmen und Modelle für paralleles Rechnen
- Parallele Algorithmen
- Vertiefung der gelernten Inhalte in Praktika mit signifikantem Umfang

2 Qualifikationsziele / Lernergebnisse

3 Empfohlene Voraussetzung für die Teilnahme

4 Prüfungsform
Bausteinbegleitende Prüfung:
- [20-00-0905-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, Standard BWS)

5 Benotung
Bausteinbegleitende Prüfung:
- [20-00-0905-iv] (Studienleistung, Mündliche/Schriftliche Prüfung, Gewichtung: 100%)

6 Verwendbarkeit des Moduls
B.Sc. Informatik
B.Sc. Informationssystemtechnik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

7 Notenverbesserung nach §25 (2)

8 Literatur
Wird in der Veranstaltung bekanntgegeben.

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0905-iv</td>
<td>Systemnahe und parallele Programmierung</td>
<td>Integrierte Veranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

| Dozent | Prof. Dr.-Ing. Andreas Koch | | |

1.3 Grundlagen der Informatik 28
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Betriebssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>20-00-0903</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Prof. Dr. phil. nat. Marc Fischlin</td>
</tr>
</tbody>
</table>

1 Lerninhalt
- Einführung in Betriebssysteme (BS) - Notwendigkeit, Design
- Prozesse und Threads - BS Datenstrukturen, Abstraktionen, Kernel/User mode, context switches, Interrupts
- Interprozeß-Kommunikation - IPC, RPC, Schnittstellen, Hierarchien, Messaging-Semantiken
- Koordination: Deadlocks - Critical sections, Deadlock-Charakterisierung, Entdeckung, Recovery und Vermeidung.
- Scheduling/Ressourcen-Management - Prozess-Reihenfolgen, unterbrechendes und unterbrechungsfreies Scheduling, verschiedene Scheduling-Konzepte und -Algorithmen, Implementierungen in BS
- Nebenläufigkeit: Races, Mutual Exclusions - Critical sections, races, spin locks, Synchronisation
- Semaphore - Semaphore, Monitore
- Speicherverwaltung - BS-Datenstrukturen, Management- und Austausch-Ansätze, virtueller Speicher, paging, caching, segmentation
- I/O - Geräte-Management, Treiber, Interrupt-Behandlung, DMA
- Dateisysteme - Anforderungen, Design, Implementierungen, Datenstrukturen, Verzeichnisse, virtuelle Dateisysteme
- Fehlertoleranz und Stabilität - Fehlertypen, zuverlässige Nachrichten, BS Zuverlässigkeit und Verfügbarkeit, Sicherheits-Aspekte
- Eingebettete & Echtzeit BS - Speicher/Festplatten/Performance-Management, Fehlertoleranz, Echtzeit-Aspekte
- Verteilte BS - verteilte Berechnung und Kommunikation, Abstraktionen, Synchronisation, Koordination, Konsistenz
- Virtuelle Maschinen (VM) - Grundlagen und Typisierung von VMs und Hypervisoren

2 Qualifikationsziele / Lernergebnisse

3 Empfohlene Voraussetzung für die Teilnahme
Empfohlen:
“Algorithmen und Datenstrukturen”, “Funktionale und objektorientierte Programmierung”, “Rechnerorganisation”

4 Prüfungsform
Bausteinbegleitende Prüfung:
- [20-00-0903-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Standard BWS)

5 Benotung
Bausteinbegleitende Prüfung:
- [20-00-0903-iv] (Fachprüfung, Mündliche/Schriftliche Prüfung, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
B.Sc. Informatik
B.Sc. Informationssystemtechnik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

7 Notenverbesserung nach §25 (2)

1.3 Grundlagen der Informatik
8 **Literatur**

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0903-iv</td>
<td>Betriebssysteme</td>
<td>Prof. Dr.-Ing. Andreas Koch</td>
<td>Integrierte Veranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

1.3 Grundlagen der Informatik
1.3.5 Software-Engineering

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>20-00-0017</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Modulduer</td>
<td>1</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Jedes 2. Sem.</td>
</tr>
</tbody>
</table>

Sprache

Deutsch

Modulverantwortliche Person

Prof. Dr. phil. nat. Marc Fischlin

1 **Lerninhalt**

Vermittlung eines grundlegenden Überblicks über die wesentlichen Bereiche des Software Engineering sowie der Kenntnisse und Fähigkeiten, die für die Modellierung und Realisierung kleinerer Softwaresysteme notwendig sind.

Die Schwerpunkthemen sind:

- Softwareprojektmangement
- Softwareprozessmodelle
- Anforderungsmanagement
- Softwareentwicklungswerkzeuge
- Software Qualität; insbesondere:
 - Testprozesse (automatisiertes Testen, Testabdeckungsmaße, Debugging)
 - grundlegende Softwaremetriken
 - Objektorientierte Analyse und Entwurf
 - Modellierung mittels UML
 - Entwurfsmuster (Design Patterns)

2 **Qualifikationsziele / Lernergebnisse**

Nach dem erfolgreichen Abschluss der Veranstaltung sind die Studierenden in der Lage folgende Aufgaben zu bewältigen:

- Die wesentlichen Bereiche des Software Engineering zu benennen und im Kontext eines Softwareentwicklungsprojekts einzuordnen;
- Etablierte Softwareentwicklungswerkzeuge zielgerichtet einzusetzen;
- Grundlegende Qualitätssicherung mit Hilfe von automatisierten Tests durchzuführen;
- Entwurf und Implementierung von objektorientierten Systemen unter Einsatz von UML und grundlegender Entwurfsmuster.

3 **Empfohlene Voraussetzung für die Teilnahme**

Empfohlen:

- Funktionale und Objektorientierte Programmierkonzepte
- Algorithmen und Datenstrukturen

4 **Prüfungsform**

Bausteinbegleitende Prüfung:

- \([20-00-0017-iv]\) (Fachprüfung, Mündliche/Schriftliche Prüfung, Standard BWS)

5 **Benotung**

Bausteinbegleitende Prüfung:

- \([20-00-0017-iv]\) (Fachprüfung, Mündliche/Schriftliche Prüfung, Gewichtung: 100%)

6 **Verwendbarkeit des Moduls**
B.Sc. Informatik
B.Sc. Wirtschaftsinformatik
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
M.Sc. Sportwissenschaft und Informatik
B.Sc. Computational Engineering
B.Sc. Informationssystemtechnik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

7 Notenverbesserung nach §25 (2)
In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25 (2) der 5. Novelle der APB und den vom FB 20 am 30.3.2017 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 Literatur
- Lehrbuch der Softwaretechnik: Softwaremanagement; H. Balzert; Springer
- Design Patterns - Elements of Reusable Object-Oriented Software; E. Gamma, R. Helm, R. Johnson, J. Vlissides; Prentice Hall
- Software Qualität - Testen, Analysieren und Verifizieren von Software; P Liggesmeyer; Springer
- WHY PROGRAMS FAIL: A Guide to Systematic Debugging; A. Zeller; Morgan Kaufmann
- Writing Effective Use Cases; A. Cockburn; Pearson

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0017-iv</td>
<td>Software Engineering</td>
<td>Integrierte Veranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>
Modulname
Software-Engineering - Einführung

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbstdauer</th>
<th>Anrechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-1010</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Prof. Dr. rer. nat. Andreas Schürr

1 Lerninhalt

In den Übungen wird ein durchgängiges Beispiel behandelt (in ein technisches System eingebettete Software), für das in Teamarbeit Anforderungen aufgestellt, ein Design festgelegt und schließlich eine prototypische Implementierung realisiert wird.

2 Qualifikationsziele / Lernergebnisse

3 Empfohlene Voraussetzung für die Teilnahme
solide Kenntnisse einer objektorientierten Programmiersprache (bevorzugt Java)

4 Prüfungsform
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Dauer: 90 min, Standard BWS)

5 Benotung
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Klausur, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
BSc ETiT, BSc iST, BSc Wi-ETiT

7 Notenverbesserung nach §25 (2)

8 Literatur
www.es.tu-darmstadt.de/lehre/se-i-v/

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-su-1010-vl</td>
<td>Software-Engineering - Einführung</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Dozent</td>
<td>Prof. Dr. rer. nat. Andreas Schürr</td>
<td></td>
</tr>
<tr>
<td>18-su-1010-ue</td>
<td>Software-Engineering - Einführung</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dozent</td>
<td>Prof. Dr. rer. nat. Andreas Schürr, M.Sc. Lars Fritsche</td>
<td></td>
</tr>
</tbody>
</table>
2 Vertiefungen und Anwendungen

Für die Wahlbereiche Vertiefungen und Anwendungen gibt es ein eigenes Modulhandbuch (Modulhandbuch: Wahlbereiche B.Sc. / M.Sc. Informationssystemtechnik (PO 2015)).
3 Studium Generale

Die weiteren Module für das Studium Generale finden Sie in einem gesonderten Modulhandbuch für das Studium Generale (Modulhandbuch Studium Generale).

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Mentoring als Fachspezifisches Instrument (für iST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-Nr.</td>
<td>18-de-1031</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>1 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>0 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>PD Dr.-Ing. Oktay Yilmazoglu</td>
</tr>
</tbody>
</table>

1 Lerninhalt
Folgende Lerninhalte werden im Mentoring vermittelt:

- Reflektion der eigenen Studienentscheidung und -situation,
- Grundzüge der Arbeitstechniken,
- Lerntechniken und Zeitmanagementmethoden.

Dabei setzt sich das Mentoring zusammen aus studentisch geführten Tutorien im Umfang von i.d.R. zwölf Einheiten bestehend aus Gruppen- und Einzelgesprächen, sowie Workshopelementen und der Simulation einer Prüfungssituation.

Für Studierende ohne Prüfungserfolg im ersten Fachsemester (WiSe) in einer Prüfung des Grundlagenbereichs (Wahlkatalog 1 bis 3) des Studien- und Prüfungsplans finden im zweiten Fachsemester (SoSe) im Umfang im Umfang von i.d.R. drei Einheiten statt bestehend aus Einzelgesprächen und Workshopelementen.

2 Qualifikationsziele / Lernergebnisse

3 Empfohlene Voraussetzung für die Teilnahme

4 Prüfungsform
Modulabschlussprüfung:
- Modulprüfung (Studienleistung, fakultativ, b/nb BWS)
- Belegen des moodle-Kurses, i.d.R. bis einschließlich zweitem Fachsemester, insbesondere studienbegleitende Bearbeitung von Fragebögen, Abgabe von Hausaufgaben und weiterer Aktivitäten im Zusammenhang mit den Mentoringgesprächen
- Hausarbeit (optionale Wiederholungsprüfung zum Erwerb der Prüfungsleistung)

5 Benotung
Modulabschlussprüfung:
- Modulprüfung (Studienleistung, fakultativ, Gewichtung: 100 %)

6 Verwendbarkeit des Moduls
BSc iST

7 Notenverbesserung nach §25 (2)
8 Literatur

- Sonstige aktuelle Materialien werden in moodle bereitgestellt

Enthaltene Kurse

<table>
<thead>
<tr>
<th>Kurs-Nr.</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-de-1031-tt</td>
<td>Mentoring als Fachspezifisches Instrument (für iST)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dozent</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr.-Ing. Oktay Yilmazoglu, Dr.-Ing. Emna Zoghlami EP Ayari</td>
<td>Vorlesung</td>
<td>1</td>
</tr>
</tbody>
</table>